8 Heat Equation on the Real Line

8.1 General Solution to the 1D heat equation on the
real line

From the discussion of conservation principles in Section 3, the 1D heat
equation has the form

% — D% on domain |z| < oo, t > 0. (1)

The goal of this section is to construct a general solution to (1) for z € R,
then consider solutions to initial value problems (Cauchy problems) involving
the heat equation.

FErxercises

1. By taking the appropriate derivatives, show that

S(l’, t) _ 2\/%612/4[” (2>

is a solution to (1). S is sometimes referred to as the source function,
or Green’s function, or fundamental solution to the heat equation.

2. Show that S(z,t) in (2) also satisfies, for any fixed ¢ > 0,

/oo S(z,t) de = 1.
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(Hint: Make the change of variables r = VT

I e dr = \/m/2.) This result implies, for each # € R, for any
t>0, [ S(x—y,t)dy = 1.

and remember that

3. These exercises show that without further conditions, solutions to (1)
can take many forms. Show that the function u(z,t) = 2% + 2t is a
solution to (1) with D = 1. (This is one member of a whole fam-
ily of multinomials (polynomials in x and t) that are solutions to the
heat equation; they are called heat polynomials. However, they are
not bounded at infinity, so they have limited use for us (or in typical
applications).



4. Show that u(z,t) = e P!sin(z) is a solution to (1).

5. What relationship exists between constants a and b such that u(z,t) =
e cos(bz) is a solution to (1)?

Now we want to obtain a general solution to (1). As a strategy, the ques-
tion is, can we reduce (1) to solving an ODE?! The answer is yes, through the

Boltzmann (similarity) transformation: Let

u(z,t) = f(n), where n = z /v Dt. (3)
Now
Ou dfom  ndf
ot dnot  2tdy’
and
ou df o dj 0%u d?
= —{7—2 = J%T#’ hence &% = D%#
so substituting these into (1) gives
d 2
_ndf _dj (1)
2dn  dn?

an ODE for f. Not only that, it is linear, first-order equation in df /dn,

d . df ﬁ(df _

Yy—o
dn(dn 2 dn) ’

) +

which has e’/ as an integrating factor. Multiplying (4) by this exponential
means we can write (4) as
(%(6772/4%) =0, or 6"2/4%(77) = constant = Cy

SO
K =2
f(n) = 00/ e T di 4+ Cy
0

nzo
:200/ e ds+Cy (s=17/2)
0

1By following our Principle 1 in section 00
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(Remember, with a variable limit always use a ‘dummy’ variable of integra-
tion.) Therefore, with Cy = 2Cj,

x/2v/ Dt )
w(w, 1) = C) / e ds + Cy. (5)
0
This is the general solution to (1) we were looking for.

Remark: The physical diffusivity parameter D has dimensional units of
length? /time, so VDt has dimensional units of length; hence 7, as defined
by (3), is dimensionless, being a ratio of length/length = (dimension of
z)/(dimension of v/Dt). Note also that for the heat equation the change
of variables u(Z,t) = u(ax,a?t) leaves the equation invariant, suggesting
to us to consider the similarity variable ax/va2t = x/y/t. For the wave
equation wy = w,,, the change in variables w(Z,t) = w(ax, at) leaves the
equation invariant, suggesting we try the same reduction as the heat equa-

tion, but with n = x/t.

FEzercises

1. Show that the only substitution u = f(n), with n of the form n = xt”,
into (1), and reducing the problem to an ordinary differential equation,
is when g = —1/2.
(Remember, we must end up with coefficients in the f equation only
in terms of 1, not with = or ¢.)

2. Consider the Boltzmann transformation (3) for the vibrating string
equation 0*u/0t? = 0?u/0x? ; that is, assume u(z,t) has the form
f(n), with n = 2t~%/2. Show that we can not reduce the string equa-
tion to an ODE with this transformation. However, show we can with
the substitution n = zt=*.

Remark: In the review section on ODEs in the appendix the error function

erf(z) = %/@ e dr

is introduced. If we let C5 := C}/7/2, we can write (5) in terms of the error

function; that is,
x

2V Dt

u(z,t) = Cserf( )+ Cs. (6)



Example: Consider the problem

2
9u — D&% on |z| < 00, t >0

u(z,0) = H(x)

Here H(-) is the Heaviside function introduced in Section 5.
For z <0

x/2v/ Dt )
0=u(x,04) = tgr&{cl /0 e ds+ Cy}
= Cl/ eds+Cy (r=—s)
0
_ _01/ e dr + Cy = —Clg es
0

Also, for x > 0,

x/2v/ Dt )
1 =u(x,0+) = tl_i}&{Cl/D e " ds+ Cy}

=0 6_82d8+02 20144-02.
0

Since Cy = C14/7/2, then Cy = 1/2 and C; = 1/4/7, so that

I I | z
w(w, 1) = ﬁ/o st 5= 51+ erf (=) (1)

FEzxercises

1. Show that uy (z,t) = e~ cos(z) cos( tan(z)) and us(z, ) = e~* cos(z) sin(3 tan(z))
are solutions to
o _ d%u

55 = 55 + q(v)u, where q(z) = }15664(@



2. In the following problem find constants «, 3 such that the function sub-
stitution u(x,t) = e® Plw(x,t) reduces the given diffusion-advection
equation to the heat equation for w:

10 o
ot 20x2 ox

3. For a small dendritic branch of a nerve cell the membrane potential
satisfies an equation of the form

Ov a 0%

Con— v—F)=——

where the constants C,, g, E, a, R; represent, respectively, membrane

capacitance, conductance, reversal potential, fiber radius, and axoplas-

mic resistivity. Let 0(z,t) = v(z,t)/E — 1, = x/\,t = t/7. What

must A and 7 be in terms of the original constants such that v satisfies
ov 0?0

= —7

7 "o
8.2 The Cauchy problem for the 1D heat equation

The Cauchy problem (or initial-value problem, IVP) for the heat equation
on the domain (x,t) € R x RT constitutes the equation (1) along with
a prescribed initial condition; that is, a specified initial heat distribution,
u(z,0) = f(x) at some point in time we call ¢t = 0. The function just needs
to be defined on R; it does not need to be continuous, though it is usu-
ally considered integrable on R. We will assume f to be at least piecewise
continuous, that is, continuous except at a finite number of points.

We derive the general formula for the solution to the Cauchy problem in
this section. Our aim here is to reason through what the solution form should
be in an informal way. In a later section on transform methods, we’ll employ
the Fourier transform to obtain the solution formula as an application of the
transform.

If u(x,t) satisfies the heat equation

ou 0*u
E—D@, OH|LU|<OO,t>O, (8)



then so does w(z,t) = %“(z,t) (just differentiate the equation). By direct

differentiation of (7) (using the Leibniz rule),

e—x2/4Dt

ou
w<x>t> = %(xﬂf) = 2—\/m7

and this is just the fundamental solution S(z,t) mentioned in the first ex-
ercises of section 8.1. Note that, for fixed ¢t > 0, w graphs as a bell-shaped
graph, symmetric about x = 0, and satisfies ffooo w(z,t)dr = 1. As a solution
to (8), think of w(z,t) as the temperature that results at x at time ¢ from an
initial unit heat source at the origin at time ¢ = 0. Because of the constant
coefficient equation, the shifting of the temperature profile again leads to a
solution of the heat equation; that is, w(x — y,t) is the temperature at z at
time ¢ caused by a unit heat source at y at time ¢ = 0. If f(y) is a function
that represents the magnitude of the heat source at location y (y is anywhere
on the real line), then f(y)w(x — y,t) gives the resulting temperature at x
at time ¢ due to a heat source of magnitude f(y) at location y given at time
t = 0. Since we have distributed heat sources over the whole real line, the
temperature at x at time ¢t should be the accumulated effects of all sources;
that is,

u(x,t) = b w(x — = ~(z—y)*/4Dt
(1) /Oof(y)( y,t)dy = zm/ £y dy. (9)

Exercise: Assuming you can interchange differentiation and integration, show
that u(x,t), defined by (9), actually solves the heat equation (8). (This is
really a consequence that S, hence w(x — y,t), solves the heat equation.)

Given that f is a continuous function, then for each fixed z,
[z —=2rvDt) — f(z) as t — O04. Let r := ==&, then 2v/Dt dr = —dy, so

then (9) can be written as

1 [ e
u(z,t) = NG /_OO flz —2rVDt)e™ dr.

Thus, as t — 0,

u— —/ flz)e™ :f(x)i/m e"’er:f(x)i/oooe_TZ)dr:f(:z:).



Figure 1: Solution to heat equation with D = 1, u(z,0) = H(5 — |z]).

(Recall that e~ is an even function and that I e dr = /7/2.)

The only non-rigorous part of the argument is that we did not justify the
need to interchange integration with the limit, which is doable under very
mild conditions, but requires a bit more real analysis development than we
will not pursue here. So, modulo a couple of technical details, we have that
u(z,t), as given by (9), is the solution to the problem

ou 8%u
o = Doz
u(z,0) = f(z)

defined on the domain |z| < oo, t > 0.

Ezample 1: Let f(z) = H(a—|z|); that is, f(z) = 1if, and only if —a < x < a
(a > 0), and zero otherwise.

Although the initial condition is discontinuous, the diffusion process will

instantly smooth it out. (You can see this, e.g., in figure 1. Integration is a
smoothing operation, and kernel S is integrable and infinitely differentiable.)
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By (9), using the above change of variables,

x+a

(z—y)? /4Dtd 1 2vDt €_T2d7”

u(z,t) = 5 —ﬂ'D 9 N

1 2 (0 ) 2 [3E
S " dr + —d
2 \/E/zae T+\/E/O e dr}
T+ a Tr—a

:_{ f( \/_t> erf(Q\/D_t)}
See figure 1, D = 1,a = 5.

Ezxample 2: Consider the IVP (motivated by neutron transport theory)

?;tL 8x2 — ku
u(z,0) = f(z)

for k > 0 constant, and —oo < z < 0o, t > 0. By letting u(z,t) = e uv(x,t),
then substituting into this problem, v(z,t) satisfies

v _ 9%
ot~ 0x?

U(QJ,O) = U(I70) = f(.T),

so, from (9),

—(a:y/4t —(z—y)2/4t
v(x,t) = 2\/_/ fly dy = u(x,t) = 2\/_/ fly dy.

Remark: This is an example of Principle 2 expressed at the end of the Intro-
ductory Section 00. The —ku term acts like a sink (or a dissipative term, or
death term), depending on the physical context.

Summary: From this section you need to remember the fundamental solu-
tion of the heat equation, the general solution of the heat equation, and the
solution of the Cauchy problem for the 1D heat equation on the real line. It
is worth keeping in mind the change of variables that simplifies the exponent



in the heat kernel that was used in this subsection.

FEzercises:

1. Solve

2
90 = D% on |z] < oo, t >0

v(x,0) =2z on |z] < 00

2. Consider the simple advection-diffusion equation

ou ou  O0%*u

ot Mo T oa
where the speed p and source term F' are constants. The constant term
can be absorbed by a change of variable. Let v = u — Az. What is A
so that v satisfies v; + pv, = v.,7 If we instead let v = u — Bt, what
would B be to achieve the same result?

+F

3. Show that the advection-diffusion equation

%:D%—a%—buon lz| < o0, t>0,
where a,b, D are positive constants, can be transformed to the heat
equation for v(z,t) if we let u(x,t) = e**Ply(z,t). Determine o, 3 in
terms of a, b, D to do this.
(ans: a = a/2D,3 =b+a*/4D.)

4. (a) Show that the nonlinear equation w; = u,, + (u;)? can be
reduced to the heat equation by a change in dependent variable w = e".
(It is a Big Deal when a transformation can be found that changes a
nonlinear equation to a linear one!)

(b) With the nonlinear diffusion equation for u in part (a) being
defined for |z| < oo, t > 0, and with u(z,0) = f(z), || < oo, using
part (a), write out the formula of the solution u(z,t).

(Ans: u(z,t) =In([_S(z —y,t)e/Wdy), where S is the fundamental
solution to the heat equation.)



5. Here is a neat observation. Consider the heat equation in 3-space:
uw, = DV?*u = D{uz, + uy, + u,.}. (Appendix C has a derivation of
the heat equation in higher dimensions that just extends the argument
given for the derivation in one space dimension as presented in section
3.) If we considered the Laplace operator V? in terms of spherical
coordinates, then

V2—8_2+22+l6_2+C0t93+;8_2
o2 ror r2062 r2 90  r?sinf d¢?

(This is an important operator in the study of geophysical flow, e.g.,
but is not particularly nice to work with at this stage.) However, if we
impose the condition of spherical symmetry, u would be independent
of the two coordinate angles, so we only have to consider the radial part
of the operator, that is g—; + %% = T%%(TQ%). Thus, we consider the
heat equation
ou D0, 6 ,0u
— =—=—(r"—) forr>0,t>0. 10
ot r? 87“( 87“) (10)

If v(r,t) = ru(r,t), where u satisfies (10), show that v solves the (ordi-
nary) heat equation

0 0?

v _ 0%

ot or?
(Unfortunately there is no corresponding transformation in the 2D ra-
dially symmetric case.)

6. Burger’s equation,

ou ~ Ou  Ju

ot " "or ~ ax?
comes up in the study of gas dynamic situations. Show that the trans-
formation u(z,t) = —2-2 In(v(z,t)) give the solution to Burger’s equa-
tion if v(x,t) satisfies the heat equation v, = v,,.
(This is the Cole-Hopf transformation, and it is one of the first nontriv-
ial cases where an important nonlinear PDE was able to be transformed
to a linear PDE; so it was a Big Deal.)
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